
CAWG 1.2
July 29, 2025

Last edited: August 11 2025

Author: Andrew Dworschak - Yakoa

Contributor: Alex Tweeddale - cheqd

This document proposes a set of interdependent pull requests (PRs) for the CAWG
1.2 spec. This set of PRs encapsulates functionality for Verifiable Presentations
(VPs), Persistent IDs and Delegation (identity hooks), and mDoc Credentials
(mDL). These implementations can be found in PR2, PR3, and PR5 respectively.

To accomplish this new functionality, we also propose several PRs restructuring
the existing CAWG spec (PR1) and reinterpreting CAWG credentials (PR4).

Each of the sections below describes the PRs, including sections for their
dependencies with the other PRs, the list of changes & reasoning for those
changes, potential issues and open questions, and example credentials resulting
from the PR.

These changes are not yet written in formal spec language, but the idea and
implementation should be clear enough to outline the required changes.

Once reviewed and agreed upon as a plan of action, these changes can be written
into the formal spec and raised as PRs in line with their interdependencies.

What this unlocks
The types of statements that can be made in the existing CAWG spec are limited:

CAWG 1.2 1

Resulting statement: An identity claims aggregator simultaneously made several
statements about a named actor’s identity, while named actor self-certified their
role & involvement in a content’s creation.

This statement merits limited trust, has no ability to support downstream actions,
and relies on self-certification of many of the key elements like the role of the
creator.

With the new additions proposed in this documents, we can make much more
powerful statements about identity, augmenting the trust provided by the tamper-
proof nature of the identity assertion:

Resulting statement: The photographer and subsequent editor of a piece of
content was a single named actor, who has a DMV-certified credential backed by

CAWG 1.2 2

the proven mDL standard.

This statement can still be communicated clearly to a content consumer, but the
expression of identity is much more flexible, can evolve with time, and benefits
from the trust afforded by parties like the claim generator and other identity
standards like mDL.

PR1: Reorganization of Verifiable
Credential (VC)

Dependencies: None

The structure of the verifiable credential as it stands today in CAWG 1.1 makes
it challenging to extend to accommodate other standards like verifiable
presentations or mDL. It also potentially introduces compatibility issues with
other identity providers in the ecosystem. I propose restructuring the structure
of the credential:

The current VC structure includes information in the credentialSubject field that
is not actually related to the subject of the credential. This can be
confusing, but also limits the extensibility of the standard. Namely, most of
the c2paAsset field does not consist of information about the credentailSubject .

A result of this blend of credentialSubject information leads to some fields that
the issuer is assumed to attest to (such as the attributes of the verifiedIdentities
field), and other information that the issuer does not attest to (most of the
c2paAsset field, such as the role , and some of the referenced_assertions)

It’s unclear whether the sig_type field is necessary in the c2paAsset data. It
currently complicates the structure a lot because it lives in the c2paAsset
data which is mostly composed of self-attested data, but is clearly
something the issuer is meant to attest to. We already have a mandatory
type of IdentityClaimsAggregationCredential , so the sig_type seems redundant. If we
can remove it, then it removes some complication around the presence of
multiple signatures, as one would have in a VP model.

What’s currently expressed in c2paAsset feels much more like termsOfUse than
it does a credentialSubject - in the sense that the credential is being issued for
the purpose of binding a credentialSubject to a c2paAsset . In this sense, the

CAWG 1.2 3

statement that is being made is akin to “a credential is being issued to this
subject, but is only meant for use by the creator (role) of this content (hard
binding referenced_assertion) to attest to the accuracy of this data (other
referenced_assertions).

I propose that the c2paAsset field be moved to termsOfUse outside the
credentialSubject field and that it get mandatory type C2PAAssetBinding . That way,
all the of the c2paAsset data can be flattened into the termsOfUse field
accordingly.

This change also allows us to flatten the verifiedIdentities field in the
credentialSubject rather than wrapping it as we have today. This more closely
matches other VC implementations and doesn’t sacrifice the ability to
include multiple verified identities since the credentialSubject field supports
array data. This will be very helpful down the line e.g. when interpreting
mDL credentials in this format. It also removes confusion around self-
signed credentials (e.g. identity hooks) where it’s not quite accurate to call
it a “verified identity”.

When it comes to the VP model, the key benefit from this change is that
termsOfUse is an allowable field in both a VC and a VP, whereas credentialSubject
is only permissible in a VC. This means that we can significantly
standardize and streamline the binding of a VC to a C2PA asset using a VP,
which is the key workflow we need to enable in PR2, the VP support pull
request.

Possible issues and open questions:

This very clearly breaks backward-compatibility. I think the current format
is just too limiting and confusing as we move forward with into more
complex and interesting workflows and that the change is justified, but I
can understand why we may receive pushback as a result.

The way I’d imagine resolving this to as a way to not break everything is
to continue (but deprecate) support for the existing
IdentityClaimsAggregationCredential format, and introduce a new type for this
credential, such as an IdenittyClaimsAggregationCredentialV2 , or even something
more generic to reflect the broader workflow that this restructuring
enables.

CAWG 1.2 4

Minor point, but why is there a blend of camelCase and snake_case in the
spec? There seems to be no discernible pattern - a mix of top-level and
sub-fields have camelCase and the majority are in snake_case. Can this be
standardized? If we’re making a breaking change anyway, this would be a
good time to sneak it in a change like this.

Example credentials:

Single verified identity

{
 "@context": [
 "https://www.w3.org/ns/credentials/v2",
 "https://schema.org",
 "https://cawg.io/identity/1.1/ica/context"
],
 "type": ["VerifiableCredential", "IdentityClaimsAggregationCredential"],
 "issuer": "did:web:identity-claims-aggregator.example.com",
 "validFrom": "2025-01-01T00:00:00Z",
 "validUntil": "2035-01-01T00:00:00Z",
 "credentialSubject": {

 "name": "First-Name Last-Name",
 "type": "cawg.document_verification",
 "provider": {
 "id": "https://example-id-verifier.com",
 "name": "Example ID Verifier",
 },
 "verifiedAt": "2024-07-26T22:30:15Z"
},
"termsOfUse": {
 "type": "C2PAAssetBinding",
 "referenced_assertions": [

 {
 "url": "self#jumbf=c2pa/urn:uuid:F9168C5E-CEB2-4faa-B6BF-329BF
39FA1E4/c2pa.assertions/c2pa.hash.data",
 "hash": "U9Gyz05tmpftkoEYP6XYNsMnUbnS/KcktAg2vv7n1n8="
 },

CAWG 1.2 5

 {
 "url": "self#jumbf=c2pa/urn:uuid:F9168C5E-CEB2-4faa-B6BF-329BF
39FA1E4/c2pa.assertions/c2pa.thumbnail.claim.jpeg",
 "hash": "G5hfJwYeWTlflxOhmfCO9xDAK52aKQ+YbKNhRZeq92c="
 },
 {
 "url": "self#jumbf=c2pa/urn:uuid:F9168C5E-CEB2-4faa-B6BF-329BF
39FA1E4/c2pa.assertions/c2pa.ingredient.v2",
 "hash": "Yzag4o5jO4xPyfANVtw7ETlbFSWZNfeM78qbSi8Abkk="
 }
],
 "role": "cawg.creator"

}
}

Multiple verified identities

{
 "@context": [
 "https://www.w3.org/ns/credentials/v2",
 "https://schema.org",
 "https://cawg.io/identity/1.1/ica/context"
],
 "type": ["VerifiableCredential", "IdentityClaimsAggregationCredential"],
 "issuer": "did:web:identity-claims-aggregator.example.com",
 "validFrom": "2025-01-01T00:00:00Z",
 "validUntil": "2035-01-01T00:00:00Z",
 "credentialSubject": [
 {

 "type": "cawg.document_verification",
 "name": "First-Name Last-Name",
 "provider": {
 "id": "https://example-id-verifier.com",
 "name": "Example ID Verifier",
 },
 "verifiedAt": "2025-01-01T:00:00:00Z"

CAWG 1.2 6

},
{

 "type": "cawg.social_media",
 "name": "My Account",
 "username": "username",
 "uri": "https://example-social-network.com/username",
 "provider": {
 "id": "https://example-social-network.com",
 "name": "Example Social Network"
 },
 "verifiedAt": "2025-01-01T:00:00:00Z"
 },

],
"termsOfUse": {
 "type": "C2PAAssetBinding",
 "referenced_assertions": [

 {
 "url": "self#jumbf=c2pa/urn:uuid:F9168C5E-CEB2-4faa-B6BF-329BF
39FA1E4/c2pa.assertions/c2pa.hash.data",
 "hash": "U9Gyz05tmpftkoEYP6XYNsMnUbnS/KcktAg2vv7n1n8="
 },
 {
 "url": "self#jumbf=c2pa/urn:uuid:F9168C5E-CEB2-4faa-B6BF-329BF
39FA1E4/c2pa.assertions/c2pa.thumbnail.claim.jpeg",
 "hash": "G5hfJwYeWTlflxOhmfCO9xDAK52aKQ+YbKNhRZeq92c="
 },
 {
 "url": "self#jumbf=c2pa/urn:uuid:F9168C5E-CEB2-4faa-B6BF-329BF
39FA1E4/c2pa.assertions/c2pa.ingredient.v2",
 "hash": "Yzag4o5jO4xPyfANVtw7ETlbFSWZNfeM78qbSi8Abkk="
 }
],
 "role": "cawg.creator"

}
}

CAWG 1.2 7

PR2: Verifiable Presentation (VP)
Support

Dependencies: PR1

Recognize VCs when wrapped in VPs, alongside the existing VC-only model:

Continue to support the VC-only credential.

If the VC includes an id , a holder matching that id can place additional
information in the termsOfUse field of type C2PAAssetBinding via a VP, provided
that there is no conflicting information between the C2PAAssetBinding of the VP
and any VCs issued to the id of the holder .

C2PAAssetBinding info can be said to be conflicting if multiple separate
hard binding assertions are referenced, if multiple distinct roles are
listed, or similarly conflicting info is found in the expected_claim_generator ,
expected_partial_claim , or expected_countersigners fields.

The VP must be signed by the holder . Failing to do so should trigger a
validation error.

With that said, it may be reasonable to bundle multiple VCs, or a set of
credentialSubject s issued to different/no id s into a single VP. As a result, we
should not necessarily trigger a validation error if the holder does not match
with one of the credentialSubject id s. However, if the holder fails to match all of
the credentailSubject id s, then a validation error may be acceptable.

Notably, this means that a VC can choose to omit the termsOfUse field,
relying entirely on the holder to establish a C2PAAssetBinding via a VP - this is a
key enabler for interfacing with transposable credentials from the rest of
the identity ecosystem. This is also why it’s key for the format of the
credentialSubject to match the expectation of the rest of the ecosystem, rather
than being wrapped in a supplemental verifiedIdentities field, because it allows
the holder of some VC that is not explicitly configured for CAWG to use it in
their content credentials.

This also means that, if multiple VCs or multiple credentialSubject s are present,
and either the credentials are issued to multiple id s or choose to omit the

CAWG 1.2 8

id , the updated C2PAAssetBinding can be selectively applied only to those
credentialSubject s matching the holder .

Possible issues and open questions:

It’s not perfectly clear to me what would constitute conflicting information
in the case of expected_claim_generator , expected_partial_claim , or expected_countersigners .
This is mostly because I don’t have a full view of the breadth of use cases
that drove those fields to be created and the fields are not often referenced
in CAWG meetings.

A named actor may want to make statements about multiple identity signals
that have been issued in VCs to separate id s. Under this framework, those
statements cannot be easily linked together, because they do not share a
common holder matching all of the id s. So, to properly express the
C2PAAssetBinding of each of these credentials, they will often need to be
placed in separate identity assertions.

To solve this problem, we need a way to link those statements together,
showing that all identity signals originated from a common named
actor. This is a statement of continuity, which relies on identity hooks to
solve.

Similarly, we need to to be very careful about which identity signals we
interpret as belonging to the same person. For example, we could create an
explicit rule (similar to what exists implicitly today) that an identity assertion
can only describe information about a single named actor, as opposed to
multiple individuals.

We would then need to be careful about attacks conflating one named
actor’s information with another. For example, a named actor could
choose to group multiple unrelated VCs into a single VP (whether or not
they can sign as a holder matching the identity of those VCs). For
example, if Alice builds an identity assertion using only a VC, Bob could
decide to intercept Alice’s VC and bundle it with his own VC, wrapping
both in a VP. He may not be able to sign with Alice’s id (if she even has
one), but could still make it look like he and Alice are the same person
and, in that way, take credit for Alice’s work. For that reason, while we
can implement a rule that collocated credentialSubject s within a VC belong

CAWG 1.2 9

to the same named actor, we should not assume the same for
collocated VCs within a VP. This association should instead be
established using a common id or via identity hooks where it applies.

Alex Tweeddale Open Questions:

If we allow the holder to carry out C2PAAssetBinding via the VP model, do
we then still require the initial VCs to be of type /
IdentityClaimsAggregationCredential , or can we allow the holder to bundle
credentials from different sources into the VP with the C2PAAssetBinding ?

E.g. can identity providers issue credentials directly to the holder, and
the wallet/claims aggregator just applied the C2PAAssetBinding on the VP
side? In my opinion, this would enable far more identity applications
and wallets to provide Claims Aggregation capabilities, using their
existing VC/VP signing flows.

Example credentials:

Single credential, bound by VP

{
 "@context": [
 "https://www.w3.org/ns/credentials/v2",
 "https://cawg.io/identity/1.1/ica/context"
],

CAWG 1.2 10

 "type": ["VerifiablePresentation", "IdentityAssertionPresentation"],
 "holder": "did:key:0xdeadbeef",
 "verifiableCredential": [{
 "@context": [

 "https://www.w3.org/ns/credentials/v2",
 "https://schema.org",
 "https://cawg.io/identity/1.1/ica/context"
],
 "type": ["VerifiableCredential", "IdentityClaimsAggregationCredential"],
 "issuer": "did:web:identity-claims-aggregator.example.com",
 "validFrom": "2025-01-01T00:00:00Z",
 "validUntil": "2035-01-01T00:00:00Z",
 "credentialSubject": {
 "id": "did:key:0xdeadbeef",

 "name": "First-Name Last-Name",
 "type": "cawg.document_verification",
 "provider": {
 "id": "https://example-id-verifier.com",
 "name": "Example ID Verifier",
 },
 "verifiedAt": "2024-07-26T22:30:15Z"
}

}],
"termsOfUse": {
 "type": "C2PAAssetBinding",
 "referenced_assertions": [

 {
 "url": "self#jumbf=c2pa/urn:uuid:F9168C5E-CEB2-4faa-B6BF-329BF
39FA1E4/c2pa.assertions/c2pa.hash.data",
 "hash": "U9Gyz05tmpftkoEYP6XYNsMnUbnS/KcktAg2vv7n1n8="
 },
 {
 "url": "self#jumbf=c2pa/urn:uuid:F9168C5E-CEB2-4faa-B6BF-329BF
39FA1E4/c2pa.assertions/c2pa.thumbnail.claim.jpeg",
 "hash": "G5hfJwYeWTlflxOhmfCO9xDAK52aKQ+YbKNhRZeq92c="
 },

CAWG 1.2 11

 {
 "url": "self#jumbf=c2pa/urn:uuid:F9168C5E-CEB2-4faa-B6BF-329BF
39FA1E4/c2pa.assertions/c2pa.ingredient.v2",
 "hash": "Yzag4o5jO4xPyfANVtw7ETlbFSWZNfeM78qbSi8Abkk="
 }
],
 "role": "cawg.creator"

}
}

Single credential, extended by VP

Provided that the C2PAAssetBinding information does not conflict, there’s no
problem having duplicated information, nor is there a problem with including
information in the VC that is not repeated in the VP, as long as the union of the
information satisfies the requirements of the CAWG spec.

{
 "@context": [
 "https://www.w3.org/ns/credentials/v2",
 "https://cawg.io/identity/1.1/ica/context"
],
 "type": ["VerifiablePresentation", "IdentityAssertionPresentation"],

CAWG 1.2 12

 "holder": "did:key:0xdeadbeef",
 "verifiableCredential": [{
 "@context": [

 "https://www.w3.org/ns/credentials/v2",
 "https://schema.org",
 "https://cawg.io/identity/1.1/ica/context"
],
 "type": ["VerifiableCredential", "IdentityClaimsAggregationCredential"],
 "issuer": "did:web:identity-claims-aggregator.example.com",
 "validFrom": "2025-01-01T00:00:00Z",
 "validUntil": "2035-01-01T00:00:00Z",
 "credentialSubject": {
 "id": "did:key:0xdeadbeef",

 "name": "First-Name Last-Name",
 "type": "cawg.document_verification",
 "provider": {
 "id": "https://example-id-verifier.com",
 "name": "Example ID Verifier",
 },
 "verifiedAt": "2024-07-26T22:30:15Z"
},
"termsOfUse": {
 "type": "C2PAAssetBinding",
 "referenced_assertions": [

 {
 "url": "self#jumbf=c2pa/urn:uuid:F9168C5E-CEB2-4faa-B6BF-329

BF39FA1E4/c2pa.assertions/c2pa.hash.data",
 "hash": "U9Gyz05tmpftkoEYP6XYNsMnUbnS/KcktAg2vv7n1n8="
 }
],
 "role": "cawg.creator"

}
}],
"termsOfUse": {
 "type": "C2PAAssetBinding",
 "referenced_assertions": [

CAWG 1.2 13

 {
 "url": "self#jumbf=c2pa/urn:uuid:F9168C5E-CEB2-4faa-B6BF-329BF
39FA1E4/c2pa.assertions/c2pa.hash.data",
 "hash": "U9Gyz05tmpftkoEYP6XYNsMnUbnS/KcktAg2vv7n1n8="
 },
 {
 "url": "self#jumbf=c2pa/urn:uuid:F9168C5E-CEB2-4faa-B6BF-329BF
39FA1E4/c2pa.assertions/c2pa.thumbnail.claim.jpeg",
 "hash": "G5hfJwYeWTlflxOhmfCO9xDAK52aKQ+YbKNhRZeq92c="
 },
 {
 "url": "self#jumbf=c2pa/urn:uuid:F9168C5E-CEB2-4faa-B6BF-329BF
39FA1E4/c2pa.assertions/c2pa.ingredient.v2",
 "hash": "Yzag4o5jO4xPyfANVtw7ETlbFSWZNfeM78qbSi8Abkk="
 }
]

}
}

Multiple credentials, bound by VP

Every VC subject being extended by a VP must match the id of the holder to be
associated with the C2PAAssetBinding of the VP. Non-matching or omitted id s are

CAWG 1.2 14

still acceptable, as long as the VC independently meets the criteria of the
CAWG spec.

{
 "@context": [
 "https://www.w3.org/ns/credentials/v2",
 "https://cawg.io/identity/1.1/ica/context"
],
 "type": ["VerifiablePresentation", "IdentityAssertionPresentation"],
 "holder": "did:key:0xdeadbeef",
 "verifiableCredential": [

 {
 "@context": [

 "https://www.w3.org/ns/credentials/v2",
 "https://schema.org",
 "https://cawg.io/identity/1.1/ica/context"
],
 "type": ["VerifiableCredential", "IdentityClaimsAggregationCredentia

l"],
 "issuer": "did:web:identity-claims-aggregator.example.com",
 "validFrom": "2025-01-01T00:00:00Z",
 "validUntil": "2035-01-01T00:00:00Z",
 "credentialSubject": [
 {
 "id": "did:key:0xdeadbeef",

 "type": "cawg.document_verification",
 "name": "First-Name Last-Name",
 "provider": {
 "id": "https://example-id-verifier.com",
 "name": "Example ID Verifier",
 },
 "verifiedAt": "2025-01-01T:00:00:00Z"
},
{

 "id": "did:key:0xdeadbeef",
 "type": "cawg.social_media",

CAWG 1.2 15

 "name": "My Account",
 "username": "username",
 "uri": "https://example-social-network.com/username",
 "provider": {
 "id": "https://example-social-network.com",
 "name": "Example Social Network"
 },
 "verifiedAt": "2025-01-01T:00:00:00Z"
 },

]
},
{
 "@context": [
 "https://www.w3.org/ns/credentials/v2",
 "https://schema.org",
 "https://cawg.io/identity/1.1/ica/context"
],

"type": ["VerifiableCredential", "IdentityClaimsAggregationCredenti
al"],

 "issuer": "did:web:another-identity-claims-aggregator.example.co
m",

 "validFrom": "2025-01-01T00:00:00Z",
 "validUntil": "2035-01-01T00:00:00Z",
 "credentialSubject": {
 "id": "did:key:0xdeadbeef",

 "type": "cawg.crypto_wallet",
 "username": "username",
 "uri": "https://example-crypto-wallet.com/username",
 "provider": {
 "id": "https://example-crypto-wallet.com",
 "name": "Example Crypto Wallet"
 },
 "verifiedAt": "2025-01-01T00:00:00Z"
 }

}
],

CAWG 1.2 16

"termsOfUse": {
 "type": "C2PAAssetBinding",
 "referenced_assertions": [

 {
 "url": "self#jumbf=c2pa/urn:uuid:F9168C5E-CEB2-4faa-B6BF-329BF
39FA1E4/c2pa.assertions/c2pa.hash.data",
 "hash": "U9Gyz05tmpftkoEYP6XYNsMnUbnS/KcktAg2vv7n1n8="
 },
 {
 "url": "self#jumbf=c2pa/urn:uuid:F9168C5E-CEB2-4faa-B6BF-329BF
39FA1E4/c2pa.assertions/c2pa.thumbnail.claim.jpeg",
 "hash": "G5hfJwYeWTlflxOhmfCO9xDAK52aKQ+YbKNhRZeq92c="
 },
 {
 "url": "self#jumbf=c2pa/urn:uuid:F9168C5E-CEB2-4faa-B6BF-329BF
39FA1E4/c2pa.assertions/c2pa.ingredient.v2",
 "hash": "Yzag4o5jO4xPyfANVtw7ETlbFSWZNfeM78qbSi8Abkk="
 }
],

 "role": "cawg.creator"
}

}

PR3: Persistent IDs and Delegation (i.e.
Identity Hooks)

Dependencies: PR1, PR2

Support statements of continuity from a named actor:

Persistent ids: If the same credentialSubject id is spotted across multiple
assertions (with an associated signature, often as the holder of a VP but
sometimes as the issuer of a self-signed VC), those id s are used to show
the continuity of statements from that id .

However, this is not always possible since VCs can be issued to non-
matching id s, or and certain id s can have signing limitations that

CAWG 1.2 17

prevent them from being used in other content credential contexts. This
is where the concept of delegation becomes important.

Delegation is a 2-step process where one identity takes responsibility for
additional statements made by a named actor, and those statements
consent to the delegation of their credential. It’s a 2-way street, and both
ways are important to capture.

Add a new field to a C2PAAssetBinding named delegatedTo . This field references
an id . When the C2PAAssetBinding includes delegatedTo , it attests that the named
actor referenced as the credentialSubject also controls the id being delegated
to. In that way, it delegates further actions relating to the credentialSubject to
the referenced id .

That first action does not demonstrate that the referenced id takes
responsibility for the credential, which requires a separate identity
assertion. That separate assertion must either be VC with the delegatedTo id
as the issuer or a VP with the delegatedTo id as the holder , wherein the identity
assertion with the delegation is included as a referenced_assertion . This
unambiguously shows that the delegatedTo id attested to and accepted the
delegated control.

An id matching delegatedTo must be at least one credentialSubject in the
identity assertion where it accepts the delegated control.

Notably, this allows new identity signals to be issued as well as an
acceptance of delegated control in one identity assertion. It’s totally
reasonable and possible for multiple VCs to be present in that same
assertion, or other identity signals to be present in the same credential
with an id matching delegatedTo .

In effect, any id of a credentialSubject can receive delegation. The delegation
mechanism is simply a clean way to express the relationship between
multiple claims, and for other assertions unrelated to identity (e.g. rights
assertions) to bind themselves to identity statements.

There’s no obligation for the id being delegatedTo to have existing meaning in
the namespace. It’s totally reasonable to do a key rotation of sorts by
delegating authority to a new id that is not yet present in the manifest, and

CAWG 1.2 18

then to subsequently (perhaps even days or weeks later) create a new
assertion accepting that delegated authority.

Possible issues and open questions:

There’s a difference between persistent ids and delegation. In the case of
delegation, trust flows only one way (not an issue for persistent ids): the id
being delegatedTo may be willing to accept the delegation of authority by
another id , but may not be willing for that id to make future statements on
its behalf.

For this reason, we should throw a validation error if an id continues to
make persistent statements that break the chain of delegation.

There may be valid reasons for a persistent id to make new
statements, such as statements revealing additional identity information
about its id namespace, but any such assertions should chain back up
to the delegation head.

CAWG Identity Assertion 5.1.1 specifies “For each assertion listed, an
assertion with the same url, alg, and hash values MUST also be listed in the
created_assertions, gathered_assertions, or assertions field of the C2PA
claim in which the identity assertion appears.”

This has a few limitations that really compromise the value of persistent
IDs and delegation:

If someone can’t reference an assertion from a previous manifest,
delegation can only happen at a point in time, and when a payload
accepts delegation, it can’t reference all of the assertions from previous
manifests (ingredients, update manifests) signed by that persistent id ,
raising questions over whether it really consented to the full delegation.

You can never create an identity assertion on an Update Manifest,
which doesn’t include a hard binding. That means that identity
assertions can only ever be made and updated on manifests where the
underlying content changed and significantly limits creators during the
publishing flow.

Aside from a potential increase in the complexity of interpreting claims,
I don’t see any reason to keep the restriction listed in 5.1.1. Instead, I

CAWG 1.2 19

https://www.notion.so/2396f6c95e54805fb7e0f27603854d1d?pvs=25

propose that the restriction be relaxed as follows:

“For each assertion listed, an assertion with the same url, alg, and hash
values MUST also be listed in the created_assertions,
gathered_assertions, or assertions field of a C2PA claim from the C2PA
Manifest Store in which the identity assertion appears.”

Example credentials:

Multiple credentials, issued to same id and signed by same holder

In this example, we can correlate two credentials as being issued by the same
named actor, because they sign a VP as the holder of the common id between
the two credentials. These credentials could even be issued across multiple
manifests on a piece of content.

If either of these credentials were not signed by a common holder , or either VC
was not issued to an id matching the holder , the credentials could not be
assumed to represent a consistent named actor.

{
 "@context": [
 "https://www.w3.org/ns/credentials/v2",
 "https://cawg.io/identity/1.1/ica/context"
],
 "type": ["VerifiablePresentation", "IdentityAssertionPresentation"],

CAWG 1.2 20

 "holder": "did:key:0xdeadbeef",
 "verifiableCredential": [{
 "@context": [

 "https://www.w3.org/ns/credentials/v2",
 "https://schema.org",
 "https://cawg.io/identity/1.1/ica/context"
],
 "type": ["VerifiableCredential", "IdentityClaimsAggregationCredential"],
 "issuer": "did:web:identity-claims-aggregator.example.com",
 "validFrom": "2025-01-01T00:00:00Z",
 "validUntil": "2035-01-01T00:00:00Z",
 "credentialSubject": {
 "id": "did:key:0xdeadbeef",

 "name": "First-Name Last-Name",
 "type": "cawg.document_verification",
 "provider": {
 "id": "https://example-id-verifier.com",
 "name": "Example ID Verifier",
 },
 "verifiedAt": "2024-07-26T22:30:15Z"
},
"termsOfUse": {
 "type": "C2PAAssetBinding",
 "referenced_assertions": [

 {
 "url": "self#jumbf=c2pa/urn:uuid:F9168C5E-CEB2-4faa-B6BF-329

BF39FA1E4/c2pa.assertions/c2pa.hash.data",
 "hash": "U9Gyz05tmpftkoEYP6XYNsMnUbnS/KcktAg2vv7n1n8="
 }
],
 "role": "cawg.creator"

}
}]

}

{

CAWG 1.2 21

 "@context": [
 "https://www.w3.org/ns/credentials/v2",
 "https://www.w3.org/ns/credentials/examples/v2"
],
 "type": ["VerifiablePresentation", "IdentityAssertionPresentation"],
 "holder": "did:key:0xdeadbeef",
 "verifiableCredential": [{
 "@context": [

 "https://www.w3.org/ns/credentials/v2",
 "https://schema.org",
 "https://cawg.io/identity/1.1/ica/context"
],
 "type": ["VerifiableCredential", "IdentityClaimsAggregationCredential"],
 "issuer": "did:web:identity-claims-aggregator.example.com",
 "validFrom": "2025-01-01T00:00:00Z",
 "validUntil": "2035-01-01T00:00:00Z",
 "credentialSubject": {

 "id": "did:key:0xdeadbeef",
 "type": "cawg.social_media",
 "name": "My Account",
 "username": "username",
 "uri": "https://example-social-network.com/username",
 "provider": {
 "id": "https://example-social-network.com",
 "name": "Example Social Network"
 },
 "verifiedAt": "2025-01-01T:00:00:00Z"
 },

"termsOfUse": {
 "type": "C2PAAssetBinding",
 "referenced_assertions": [

 {
 "url": "self#jumbf=c2pa/urn:uuid:F9168C5E-CEB2-4faa-B6BF-329

BF39FA1E4/c2pa.assertions/c2pa.hash.data",
 "hash": "U9Gyz05tmpftkoEYP6XYNsMnUbnS/KcktAg2vv7n1n8="
 }

CAWG 1.2 22

],
 "role": "cawg.creator"

}
}]

}

Delegation of authority from one id to another

This is the minimal set of information for 0xdeadbeef to delegate control of
their credential to 0xfeedface. First, we see 0xdeadbeef delegateTo 0xfeedface
in the C2PAAssetBinding , thereby consenting to the delegated control. Then,
0xfeedface self-signs a credential with the delegating assertion as a
referenced_assertion , thereby accepting the delegation.

{
 "@context": [
 "https://www.w3.org/ns/credentials/v2",
 "https://cawg.io/identity/1.1/ica/context"
],
 "type": ["VerifiablePresentation", "IdentityAssertionPresentation"],
 "holder": "did:key:0xdeadbeef",
 "verifiableCredential": [{
 "@context": [

 "https://www.w3.org/ns/credentials/v2",

CAWG 1.2 23

 "https://schema.org",
 "https://cawg.io/identity/1.1/ica/context"
],
 "type": ["VerifiableCredential", "IdentityClaimsAggregationCredential"],
 "issuer": "did:web:identity-claims-aggregator.example.com",
 "validFrom": "2025-01-01T00:00:00Z",
 "validUntil": "2035-01-01T00:00:00Z",
 "credentialSubject": {
 "id": "did:key:0xdeadbeef",

 "name": "First-Name Last-Name",
 "type": "cawg.document_verification",
 "provider": {
 "id": "https://example-id-verifier.com",
 "name": "Example ID Verifier",
 },
 "verifiedAt": "2024-07-26T22:30:15Z"
}

}],
"termsOfUse": {
 "type": "C2PAAssetBinding",
 "referenced_assertions": [

 {
 "url": "self#jumbf=c2pa/urn:uuid:F9168C5E-CEB2-4faa-B6BF-329BF
39FA1E4/c2pa.assertions/c2pa.hash.data",
 "hash": "U9Gyz05tmpftkoEYP6XYNsMnUbnS/KcktAg2vv7n1n8="
 }
],
 "role": "cawg.creator",
 "delegatedTo": "did:key:0xfeedface"

}
}

{
 "@context": [
 "https://www.w3.org/ns/credentials/v2",
 "https://schema.org",

CAWG 1.2 24

 "https://cawg.io/identity/1.1/ica/context"
],
 "type": ["VerifiableCredential", "SelfSignedIdentityCredential"],
 "issuer": "did:key:0xfeedface",
 "validFrom": "2025-01-01T00:00:00Z",
 "validUntil": "2035-01-01T00:00:00Z",
 "credentialSubject": {

 "id": "0xfeedface",
 },
 "termsOfUse": {

 "type": "C2PAAssetBinding",
 "referenced_assertions": [

 {
 "url": "self#jumbf=c2pa/urn:uuid:F9168C5E-CEB2-4faa-B6BF-329BF
39FA1E4/c2pa.assertions/c2pa.hash.data",
 "hash": "U9Gyz05tmpftkoEYP6XYNsMnUbnS/KcktAg2vv7n1n8="
 },
 {
 "url": "self#jumbf=c2pa/urn:uuid:F9168C5E-CEB2-4faa-B6BF-329BF
39FA1E4/c2pa.assertions/cawg.identity",
 "hash": "G5hfJwYeWTlflxOhmfCO9xDAK52aKQ+YbKNhRZeq92c="
 }
]

}
}

Multiple credentials, bound by delegation

CAWG 1.2 25

Here, in addition to accepting 0xdeadbeef’s delegation of control, 0xfeedface
adds an additional identity signal about their social media profile.

{
 "@context": [
 "https://www.w3.org/ns/credentials/v2",
 "https://cawg.io/identity/1.1/ica/context"
],
 "type": ["VerifiablePresentation", "IdentityAssertionPresentation"],
 "holder": "did:key:0xdeadbeef",
 "verifiableCredential": [{
 "@context": [

 "https://www.w3.org/ns/credentials/v2",
 "https://schema.org",
 "https://cawg.io/identity/1.1/ica/context"
],
 "type": ["VerifiableCredential", "IdentityClaimsAggregationCredential"],
 "issuer": "did:web:identity-claims-aggregator.example.com",
 "validFrom": "2025-01-01T00:00:00Z",
 "validUntil": "2035-01-01T00:00:00Z",
 "credentialSubject": {
 "id": "did:key:0xdeadbeef",

 "name": "First-Name Last-Name",
 "type": "cawg.document_verification",

CAWG 1.2 26

 "provider": {
 "id": "https://example-id-verifier.com",
 "name": "Example ID Verifier",
 },
 "verifiedAt": "2024-07-26T22:30:15Z"
}

}],
"termsOfUse": {
 "type": "C2PAAssetBinding",
 "referenced_assertions": [

 {
 "url": "self#jumbf=c2pa/urn:uuid:F9168C5E-CEB2-4faa-B6BF-329BF
39FA1E4/c2pa.assertions/c2pa.hash.data",
 "hash": "U9Gyz05tmpftkoEYP6XYNsMnUbnS/KcktAg2vv7n1n8="
 }
],
 "role": "cawg.creator",
 "delegatedTo": "did:key:0xfeedface"

}
}

{
 "@context": [
 "https://www.w3.org/ns/credentials/v2",
 "https://www.w3.org/ns/credentials/examples/v2"
],
 "type": ["VerifiablePresentation", "IdentityAssertionPresentation"],
 "holder": "did:key:0xfeedface",
 "verifiableCredential": [{
 "@context": [

 "https://www.w3.org/ns/credentials/v2",
 "https://schema.org",
 "https://cawg.io/identity/1.1/ica/context"
],
 "type": ["VerifiableCredential", "IdentityClaimsAggregationCredential"],
 "issuer": "did:web:identity-claims-aggregator.example.com",

CAWG 1.2 27

 "validFrom": "2025-01-01T00:00:00Z",
 "validUntil": "2035-01-01T00:00:00Z",
 "credentialSubject": {

 "id": "0xfeedface",
 "type": "cawg.social_media",
 "name": "My Account",
 "username": "username",
 "uri": "https://example-social-network.com/username",
 "provider": {
 "id": "https://example-social-network.com",
 "name": "Example Social Network"
 },
 "verifiedAt": "2025-01-01T:00:00:00Z"
 }
}],
"termsOfUse": {
 "type": "C2PAAssetBinding",
 "referenced_assertions": [

 {
 "url": "self#jumbf=c2pa/urn:uuid:F9168C5E-CEB2-4faa-B6BF-329BF
39FA1E4/c2pa.assertions/c2pa.hash.data",
 "hash": "U9Gyz05tmpftkoEYP6XYNsMnUbnS/KcktAg2vv7n1n8="
 },
 {
 "url": "self#jumbf=c2pa/urn:uuid:F9168C5E-CEB2-4faa-B6BF-329BF
39FA1E4/c2pa.assertions/cawg.identity",
 "hash": "G5hfJwYeWTlflxOhmfCO9xDAK52aKQ+YbKNhRZeq92c="
 }
]

}
}

PR4: Claim Generator Attestations
Dependencies: PR2, PR3 (not a true dependency, but much more powerful with
PR3 included)

CAWG 1.2 28

Specify which attestations are being made by a claimed generator when an
identity assertion involves a claim generator.

The claim generator can confer trust to credentials in a way others cannot:

The claim generator has a direct line of communication with named
actors in certain role s (e.g. creators). While an identity aggregator
generally cannot attest to the role a named actor played a piece of
content, the claim generator can.

With that direct line of communication, a claim generator can place
self-signing credentials directly in the custody of those named actors.
That way, even a completely anonymized id can be bound to a trusted
role and make trusted attestations about their referenced_assertions .

The claim generator can attest to certain identity attributes of an
authenticated user, such as their login email address or their in-
platform username. These attributes merit a high degree of trust when
attested to by a claim generator.

All info included in a VC by the claim generator is assumed to be attested to
by the claim generator - this includes the full C2PAAssetBinding , including the
role of the named actor and all referenced_assertions .

This additional trust can be inferred from the credential by recognizing that
the issuer of the VC matches the signature of the enveloping manifest.

Possible issues and open questions:

This raises the question of why not to strengthen the assumption of
attestation on behalf of identity aggregators? PR2 gives them an
unambiguous way to separate information attested to by the holder vs.
information attested to by the aggregator (by placing the self-attested
C2PAAssetBinding into the holder -signed VP as opposed to the issuer -signed
VC), so why not just encourage that behavior? There’s nothing to stop an
identity aggregator from wrapping the VC in an ephemeral key and signing
as the holder, and this allows an advanced identity aggregator to attest to
C2PAAssetBinding info they otherwise couldn’t.

There are several ways a claim generator could conceivably indicate their
attestation to the properties of a named actor - by placing the identity

CAWG 1.2 29

assertion as a created_assertion or by signing the VC with a certificate
matching the manifest. I prefer the 2nd option, which means keeping the
identity assertion as a gathered_assertion . This allows the claim generator to
attest to certain information in the C2PAAssetBinding while still allowing the
creator to add self-attested information via envelopment of the VC in a
holder -signed VP.

This doesn’t imply that a creator needs to manually sign VPs - the
entire process can still be managed by a claim generator or an identity
aggregator, but it provides a clear demarcation of who attests to which
information

Alex Tweeddale notes: I see a clear future goal as having custodied (via
claims aggregator) and non-custodied (via identity wallet) signing of a
C2PAsset. Most users would feasibly use a claims aggregator for
simplicity, but the specification should be flexible enough to support
self-signing as well.

There may be challenges in associating a claim generator signature on the
claim with their signature on an identity assertion due to the differences in
X.509s vs. DID methods. These challenges are likely solvable, but in the
worst case, the claim generator can also indicate their attestation via a
created_assertion . Next step is to look into how these signatures can be
formed.

Example credentials:

Issuance of a basic credential:

CAWG 1.2 30

A claim generator can often attest to the role of a creator in a piece of content,
and give that creator a self-signing id by which to make future statements
about their work. By signing a verifiable presentation with that key, the creator
is then able to use it in future attestations via persistent IDs.

{
 "@context": [
 "https://www.w3.org/ns/credentials/v2",
 "https://cawg.io/identity/1.1/ica/context"
],
 "type": ["VerifiablePresentation", "IdentityAssertionPresentation"],
 "holder": "did:key:0xdeadbeef",
 "verifiableCredential": [{

 "@context": [
 "https://www.w3.org/ns/credentials/v2",
 "https://schema.org",
 "https://cawg.io/identity/1.1/ica/context"
],
 "type": ["VerifiableCredential", "IdentityClaimsAggregationCredential"],
 "issuer": "did:web:claim-generator.example.com",
 "validFrom": "2025-01-01T00:00:00Z",
 "validUntil": "2035-01-01T00:00:00Z",
 "credentialSubject": {

CAWG 1.2 31

 "id": "did:key:0xdeadbeef"
},
"termsOfUse": {
 "type": "C2PAAssetBinding",
 "referenced_assertions": [

 {
 "url": "self#jumbf=c2pa/urn:uuid:F9168C5E-CEB2-4faa-B6BF-329

BF39FA1E4/c2pa.assertions/c2pa.hash.data",
 "hash": "U9Gyz05tmpftkoEYP6XYNsMnUbnS/KcktAg2vv7n1n8="
 }
],
 "role": "cawg.creator"

}
}]

}

Blending a claim generator-issued credential with self-signed attestations

A VP can be used to clearly demarcate which parts of a credential are attested
to by the claim generator and which are self-attested by the named actor.
Here, a claim generator attests to the named actor’s role in the content, and
that named actor attests to additional assertions using that id . The identity of
the creator remains completely anonymous.

CAWG 1.2 32

{
 "@context": [
 "https://www.w3.org/ns/credentials/v2",
 "https://cawg.io/identity/1.1/ica/context"
],
 "type": ["VerifiablePresentation", "IdentityAssertionPresentation"],
 "holder": "did:key:0xdeadbeef",
 "verifiableCredential": [{
 "@context": [

 "https://www.w3.org/ns/credentials/v2",
 "https://schema.org",
 "https://cawg.io/identity/1.1/ica/context"
],
 "type": ["VerifiableCredential", "IdentityClaimsAggregationCredential"],
 "issuer": "did:web:claim-generator.example.com",
 "validFrom": "2025-01-01T00:00:00Z",
 "validUntil": "2035-01-01T00:00:00Z",
 "credentialSubject": {
 "id": "did:key:0xdeadbeef"

},
"termsOfUse": {
 "type": "C2PAAssetBinding",
 "referenced_assertions": [

 {
 "url": "self#jumbf=c2pa/urn:uuid:F9168C5E-CEB2-4faa-B6BF-329

BF39FA1E4/c2pa.assertions/c2pa.hash.data",
 "hash": "U9Gyz05tmpftkoEYP6XYNsMnUbnS/KcktAg2vv7n1n8="
 }
],
 "role": "cawg.creator"

}
}],
"termsOfUse": {
 "type": "C2PAAssetBinding",
 "referenced_assertions": [

CAWG 1.2 33

 {
 "url": "self#jumbf=c2pa/urn:uuid:F9168C5E-CEB2-4faa-B6BF-329BF
39FA1E4/c2pa.assertions/c2pa.hash.data",
 "hash": "U9Gyz05tmpftkoEYP6XYNsMnUbnS/KcktAg2vv7n1n8="
 },
 {
 "url": "self#jumbf=c2pa/urn:uuid:F9168C5E-CEB2-4faa-B6BF-329BF
39FA1E4/c2pa.assertions/c2pa.thumbnail.claim.jpeg",
 "hash": "G5hfJwYeWTlflxOhmfCO9xDAK52aKQ+YbKNhRZeq92c="
 },
 {
 "url": "self#jumbf=c2pa/urn:uuid:F9168C5E-CEB2-4faa-B6BF-329BF
39FA1E4/c2pa.assertions/c2pa.ingredient.v2",
 "hash": "Yzag4o5jO4xPyfANVtw7ETlbFSWZNfeM78qbSi8Abkk="
 }
]

}
}

Demonstrating continued involvement along the content lifecycle

The trust conferred by a claim generator allows a named actor to bring trust to
future statements they make along the content lifecycle. Here, as an example,
they can add their attestation to new assertions via referenced_assertions , even

CAWG 1.2 34

when those assertions live in a future manifest, and they can delegate their
control to another id which may have more meaning in the later manifest
(perhaps that id was attested to by the later manifest’s claim generator).

{
 "@context": [
 "https://www.w3.org/ns/credentials/v2",
 "https://cawg.io/identity/1.1/ica/context"
],
 "type": ["VerifiablePresentation", "IdentityAssertionPresentation"],
 "holder": "did:key:0xdeadbeef",
 "verifiableCredential": [{

 "@context": [
 "https://www.w3.org/ns/credentials/v2",
 "https://schema.org",
 "https://cawg.io/identity/1.1/ica/context"
],
 "type": ["VerifiableCredential", "IdentityClaimsAggregationCredential"],
 "issuer": "did:web:claim-generator.example.com",
 "validFrom": "2025-01-01T00:00:00Z",
 "validUntil": "2035-01-01T00:00:00Z",
 "credentialSubject": {

 "id": "0xdeadbeef"
},
"termsOfUse": {
 "type": "C2PAAssetBinding",
 "referenced_assertions": [

 {
 "url": "self#jumbf=c2pa/urn:uuid:F9168C5E-CEB2-4faa-B6BF-329

BF39FA1E4/c2pa.assertions/c2pa.hash.data",
 "hash": "U9Gyz05tmpftkoEYP6XYNsMnUbnS/KcktAg2vv7n1n8="
 }
],
 "role": "cawg.creator"

}
}]

CAWG 1.2 35

}

{
 "@context": [
 "https://www.w3.org/ns/credentials/v2",
 "https://schema.org",
 "https://cawg.io/identity/1.1/ica/context"
],
 "type": ["VerifiableCredential", "IdentityClaimsAggregationCredential"],
 "issuer": "did:key:0xdeadbeef",
 "validFrom": "2025-01-01T00:00:00Z",
 "validUntil": "2035-01-01T00:00:00Z",
 "credentialSubject": {

 "id": "0xdeadbeef"
},
"termsOfUse": {
 "type": "C2PAAssetBinding",
 "referenced_assertions": [

 {
 "url": "self#jumbf=c2pa/urn:uuid:E9168C5E-CEB2-4faa-B6BF-329BF
39FA1E3/c2pa.assertions/c2pa.hash.data",
 "hash": "V9Gyz05tmpftkoEYP6XYNsMnUbnS/KcktAg2vv7n1n9="
 },
 {
 "url": "self#jumbf=c2pa/urn:uuid:F9168C5E-CEB2-4faa-B6BF-329BF
39FA1E4/c2pa.assertions/c2pa.thumbnail.claim.jpeg",
 "hash": "G5hfJwYeWTlflxOhmfCO9xDAK52aKQ+YbKNhRZeq92c="
 },
 {
 "url": "self#jumbf=c2pa/urn:uuid:F9168C5E-CEB2-4faa-B6BF-329BF
39FA1E4/c2pa.assertions/c2pa.ingredient.v2",
 "hash": "Yzag4o5jO4xPyfANVtw7ETlbFSWZNfeM78qbSi8Abkk="
 }
],
 "delegatedTo": "did:key:0xfeedface"

CAWG 1.2 36

}
}

PR5: mDL Compatibility
Dependencies: PR1, PR2

mDocs are an excellent, widely-adopted example of an identity credential
build atop verifiable presentations of verifiable credentials. However,
mainstream implementation of the mDoc standard (including mDL) do not
generally allow arbitrary plaintext information to be included in signed
identities.

For example, Apple’s PassKit allows only a descriptor (which identity
elements are being requested, such as name & age), a merchantIdentifier string,
and a nonce to be included in the request. Other mainstream libraries face
similar limitations.

This is problematic because the signed credential needs to encapsulate the
scope of the content being signed.

That said, it is possible to leverage these mainstream implementations of
secure identity credentials by overloading the nonce . Since the nonce is
meant to prescribe a session challenge to ensure the proper scope of the
credential anyway, this is not entirely outside the purpose of the nonce .

To that end, the standard can be expanded to support mDoc credentials by
binding data to a nonce as follows:

{
 "mDocCredential": {
 <-- Verifiable presentation object conforming to mDoc standard -->
 ...
 "nonce": "hashedc2paAssetData",
 },
 "termsOfUse": {

 /* Includes all usual C2PA asset data like the C2PAAssetBinding typ
e, referenced assertions, and role */
 ...

CAWG 1.2 37

https://developer.apple.com/documentation/passkit/pkidentityrequest

 /* Includes a random one-off salt making the resulting nonce rando
m and conforming to the spirit of a nonce */
 "salt": "randomuuid"
 }
 ,
 "nonceData": "hashedc2paAssetData"
}

Possible issues and open questions:

There are many ways one could create the hash for the nonce. The method
to hash the C2PAAssetBinding into a nonce can either be standardized or
appropriately specified with a field that describes the hash method, in the
same way that C2PA hashed URIs allow the specification of an alg .

While this methodology can’t be blocked from any implementation of
mDocs, it does raise issues around consent. Namely, how can we be sure
that the user was adequately informed that their shared credentials would
be mounted permanently to a piece of content when the actual data
bearing object is obscured away to this degree?

Example credentials:

mDL credential bound to a C2PA asset

The below example is somewhat simplified rather than enumerating all the
data an mDL credential might enumerate in its credential (e.g. full session

CAWG 1.2 38

https://www.notion.so"hashedc2paassetdata"/

transcript, revealing of hashed identity data), but the approach should be
evident: we can overload the nonce as a way to sign over all the data in a VP
we otherwise have no control over.

{
 "mDocCredential": {
 "@context": [
 "https://www.w3.org/ns/credentials/v2",
 "https://w3id.org/mdl/v1" // typical mDL context
],
 "type": ["VerifiablePresentation", "mDL"],
 "id": "urn:uuid:e6cfa2d1-1234-4567-8901-abcdef012345",
 "docType": "org.iso.18013.5.1.mDL",
 "holder": "did:key:z6MksfYj8KX5vB8t7f9syh2mEcH3NWVEGXz3vR3hC
9qF",
 /* 32-byte SHA-256 of the canonicalised c2paAsset object shown below
*/
 "nonce": "khY+wzWPo1m5Eiyz5S0PmaoYuC0Xhe9kWpjU1vySk1A=",

 "verifiableCredential": [{
 "@context": [
 "https://www.w3.org/ns/credentials/v2",
 "https://w3id.org/mdl/v1"
],
 "type": ["VerifiableCredential", "mDL"],
 "id": "urn:uuid:01b7c653-1e9f-4e2d-9bd7-6ecf71af844a",
 "issuer": {
 "id": "did:web:dmv.ca.gov",
 "name": "California Department of Motor Vehicles"
 },
 "issuanceDate": "2025-07-20T00:00:00Z",
 "expirationDate": "2035-07-20T00:00:00Z",

 /* ---------- mDL data elements (namespace org.iso.18013.5.1) --------
-- */
 "credentialSubject": {

CAWG 1.2 39

 "id": "did:key:z6MksfYj8KX5vB8t7f9syh2mEcH3NWVEGXz3vR3hC9q
F",
 "family_name": "DOE",
 "given_name": "JANE",
 "birth_date": "1990-05-15",
 "issue_date": "2025-07-20",
 "expiry_date": "2035-07-20",
 "issuing_country": "USA",
 "issuing_authority": "CA-DMV",
 "portrait": "
A..." // truncated
 },

 /* Revocation list or status service per VC best-practice */
 "credentialStatus": {
 "id": "https://dmv.ca.gov/credentials/status/01b7c653-1e9f",
 "type": "CredentialStatusList2017"
 },

 "proof": {
 "type": "Ed25519Signature2018",
 "created": "2025-07-20T00:00:05Z",
 "verificationMethod": "did:web:dmv.ca.gov#key-1",
 "proofPurpose": "assertionMethod",
 "jws": "eyJhbGciOiJFZERTQSIs..."
 }
 }],

 "proof": {
 "type": "Ed25519Signature2018",
 "created": "2025-07-20T00:00:07Z",
 "verificationMethod": "did:key:z6MksfYj8KX5vB8t7f9syh2mEcH3NWV
EGXz3vR3hC9qF#controller",
 "proofPurpose": "authentication",
 "jws": "eyJhbGciOiJFZERTQSIs..."
 }

CAWG 1.2 40

 },

 "c2paAsset": {
 "type": "C2PAAssetBinding",
 "referenced_assertions": [
 {
 "url": "self#jumbf=c2pa/urn:uuid:F9168C5E-CEB2-4FAA-B6BF-329BF
39FA1E4/c2pa.assertions/c2pa.hash.data",
 "hash": "U9Gyz05tmpftkoEYP6XYNsMnUbnS/KcktAg2vv7n1n8="
 }
],
 "role": "cawg.creator",
 /* one-off salt mixed into the digest to preserve true nonce semantics */
 "salt": "1e1c9780-452d-420c-8c18-6e1b5adc94b8",
 /* identical to the `nonce` above to make the binding verifiable */

 "nonceData": "khY+wzWPo1m5Eiyz5S0PmaoYuC0Xhe9kWpjU1vySk1A
="
 },
}

CAWG 1.2 41

